miércoles, 9 de marzo de 2016
10° Resolución de Triángulos Rectángulos
RESUELVE LOS EJERCICIOS Y PRESÉNTALOS EN HOJAS EN TU PRÓXIMA SESIÓN DE APRENDIZAJE
1. Una escalera de 10 m de longitud está apoyada sobre la pared. El pie de la escalera dista 6 m de la pared. ¿Qué altura alcanza la escalera sobre la pared?
2. Calcula la altura de un triángulo equilátero de 14 cm de lado.
3. Calcula la diagonal de un cuadrado de 9 cm de lado.
4. Calcula la altura de un rectángulo cuya diagonal mide 6,8 cm y la base 6 cm.
5. Una escalera de 65 dm de longitud está apoyada sobre la pared. El pie de la
escalera dista 25 dm de la pared.
a) ¿A qué altura se apoya la parte superior de la escalera en la pared?
b) ¿A qué distancia de la pared habrá que colocar el pie de esta misma escalera para
que la parte superior se apoye en la pared a una altura de 52 dm?
5. Calcular el área de una parcela triangular, sabiendo que dos de sus lados miden 80 m y 130 m, y forman entre ellos un ángulo de 70°.
6. Uno de los catetos de un triángulo rectángulo mide 4,8 cm y el ángulo opuesto a este cateto mide 54° Halla la medida del resto de los lados y de los ángulos del triángulo.
Suscribirse a:
Enviar comentarios (Atom)
Una escalera de 55 dm de longitud está apoyada sobre la pared. El pie de la escalera dista 350 cm de la pared. ¿A qué altura se apoya la parte superior de la escalera en la pared?
ResponderEliminarSeleccione una:
ResponderEliminarh=345,65 cm
h=42,42 dm
h=35,3 dm